Classical Mendelian Genetics

© 2015 James Bier

Objectives

- 1. Describe the characteristics of the model organisms for genetic studies.
- 2. Describe Mendel's experimental crosses, their results, and the conclusions he derived from them.
- 3. Define gene, allele, homozygous, heterozygous, dominant, recessive, genotype and phenotype.
- 4. State the principles of segregation and independent assortment.
- 5. Perform a monohybrid and dihybrid cross and determine the genotypic and phenotypic ratios.
- 6. Contrast autosomal dominant and autosomal recessive traits.
- 7. Use pedigree charts to determine the genotypes of individuals.

Outline

- A. Model Organisms
 - 1. Characteristics
 - 2. Common Model Organisms
- B. Single Gene Inheritance
 - 1. Experimental Design
 - a. Parental (P_1) Generation
 - b. First Filial (F₁) Generation
 - c. Second Filial (F₂) Generation
 - d. Third Filial (F₃) Generation
 - Model for Genetic Inheritance
 - a. Definitions
 - b. Principle of Dominance
 - c. Principle of Segregation
 - d. Punnett Square
 - e. Test Crosses
 - 3. Single Gene Traits in Humans
- C. Multiple Gene Inheritance
 - 1. Experimental Design
 - a. Parental (P₁) Generation
 - b. First Filial (F₁) Generation
 - c. Second Filial (F₂) Generation
 - d. Third Filial (F₃) Generation
 - 2. Law of Independent Assortment
 - 3. Probability Calculations
- D. Pedigrees

2.

A. Model Organisms

1. Characteristics

- Small
- Fast growing
- Short generation time
- Easy to control mating
- Produce lots of progeny
- Inexpensive
- Small genomes

2. Common Model Organisms

- Escherichia coli
 - Single chromosome
 - Used to clone DNA from other species
- Yeast (Saccharomyces cerevisiae)
 - Haploid and diploid generations

- Fruit flies (*Drosophila*)
- Roundworm (*Caenorhabditis elegans*)
 - Transparent
 - Development well documented
 - Fate of every cell characterized
- Mouse (*Mus musculus*)
 - Animal model closest to humans
 - Used to characterize some human DNA
- Zebrafish (Danio rerio)
 - Develop outside mother
 - Transparent
- Arabidopsis
 - Easiest plant model
- Corn/Maize (Zea mays)

B. Single Gene Inheritance

1. Experimental Design

a. Parental (P₁) Generation

- Seven discrete true-breeding traits
 - No intermediate variant
 - Easy to distinguish
 - e.g., seed form, seed color, height

- Cross-pollinated opposite true-breeders
 - Monohybrid cross
 - "X" designates cross
 - e.g., TALL X SHORT

b. First Filial (F₁) Generation

- Offspring from P₁ cross
- All F₁ displayed only one of two traits

 e.g., ALL offspring were TALL
 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

- Expressed trait dominant
- Trait not expressed recessive
- F₁ generation self-pollinates

c. Second Filial (F₂) Generation

- Offspring from F₁ selfing
- Ratio ³/₄ dominant, ¹/₄ recessive • e.g., 787 TALL, 277 SHORT Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Repeated experiment with other traits
 - Always 3 dominant: 1 recessive
- While recessive trait not seen in F₁, recessive variant still present

d. Third Filial (F₃) Generation

- Offspring from F₂ selfing
 - Test of model from F₂
- Recessive phenotype
 - All true-breeders
- Dominant phenotypes
 - One-third are true breeders
 - Two-thirds are not
 - Phenotypic ratio of these offspring
 - ³/₄ dominant, ¹/₄ recessive

2. Model for Genetic Inheritance

• How can a trait disappear in one generation, then reappear in ¹/₄ of next?

a. Definitions

- Multiple forms of a gene
 - Allele
 - Locus (pl. loci)
- Offspring has two genes for each trait
 - Receives one from each parent
 - Homozygous
 - Heterozygous
- Genotype
- Phenotype

b. Mendel's Principle of Dominance

- Dominant
- Recessive

c. Principle of Segregation

Gametes carry only one allele for trait

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Fertilization restores two copies •
- Correlates with chromosome behavior during meiosis ٠
 - Independent Assortment of Chromosomes •

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

d. Punnett Square

- Does hypothesis fit data?
 - e.g., TALL X SHORT
 - P_1 Tall (TT) X short (tt)
 - F_1 All Tall (Tt)
 - $F_2 \frac{3}{4}$ Tall : $\frac{1}{4}$ short
 - Phenotypic Ratio
 - ¹/₄ TT : ¹/₂ Tt : ¹/₄ tt
 - Genotypic Ratio

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

e. Test Crosses

- Determines genotype of dominant plant
- Test individual crossed with recessive
 - Recessive must be homozygous (tt)
- Possibilities
- All offspring dominant
 - Test individual homozygous dominant (TT)
- ¹/₂ offspring dominant, ¹/₂ recessive
 - Test individual heterozygous (Tt)

3. Single Gene Traits in Humans

• Mendelian or Unifactorial Traits

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Table 4.2

Some	Mendelian	Disorders	in	Humans
John	monuonan	DISCHAUIS		I ICH HCH IS

Disorder	Symptoms	
Autosomal Recessive		
Ataxia telangiectasis	Facial rash, poor muscular coordination, involuntary eye movements, high risk for cancer, sinus and lung infectior	
Cystic fibrosis	Lung infections and congestion, poor fat digestion, male infertility, poor weight gain, salty sweat	
Familial hypertrophic cardiomyopathy	Overgrowth of heart muscle, causing sudden death in young adults	
Gaucher disease	Swollen liver and spleen, anemia, internal bleeding, poor balance	
Hemochromatosis	Body retains iron; high risk of infection, liver damage, excess skin pigmentation, heart and pancreas damage	
Maple syrup urine disease	Lethargy, vomiting, irritability, mental retardation, coma, and death in infancy	
Phenylketonuria	Mental retardation, fair skin	
Sickle cell disease	Joint pain, spleen damage, high risk of infection	
Tay-Sachs disease	Nervous system degeneration	
Autosomal Dominant		
Achondroplasia	Dwarfism with short limbs, normal size head and trunk	
Familial hypercholesterolemia	Very high serum cholesterol, heart disease	
Huntington disease	Progressive uncontrollable movements and personality changes, beginning in middle age	
Lactose intolerance	Inability to digest lactose, causing cramps after ingestion	
Marfan syndrome	Long limbs, sunken chest, lens dislocation, spindly fingers, weakened aorta	
Myotonic dystrophy	Progressive muscle wasting	
Neurofibromatosis (I)	Brown skin marks, benign tumors beneath skin	
Polycystic kidney disease	Cysts in kidneys, bloody urine, high blood pressure, abdominal pain	
Polydactyly	Extra fingers and/or toes	
Porphyria variegata	Red urine, fever, abdominal pain, headache, coma, death	

• Autosomal Dominant

- Needs to be present in only one parent
- Generally "gain of function" mutation
- Usually expressed after reproductive stage
- Autosomal Recessive
 - Must be present in both parents
 - Carriers
 - Generally "loss of function" mutation
 - Usually expressed earlier in life
 - Usually more severe

C. Multiple Gene Inheritance

1. Experimental Design

a. Parental (P₁) Generation

- Dihybrid cross
 - Cross-pollinated P₁'s that bred true for two alternate traits
 - Double Dominant X Double Recessive
 - e.g., ROUND YELLOW (RRYY) X WRINKLED GREEN (rryy) seeds

b. First Filial (F₁) Generation

- All display both dominant traits
 - e.g., ALL offspring produced ROUND YELLOW (RrYy) seeds
- F₁ generation self-pollinates

c. Second Filial (F₂) Generation

- F₂ offspring
 - 9/16 Round Yellow
 - 3/16 Round green
 - 3/16 wrinkled Yellow
 - 1/16 wrinkled green

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Test crossed plants with double recessive
 - e.g., WRINKLED GREEN (rryy)

d. Third Filial (F₃) Generation

• Offspring from F₂ test cross

2. Law of Independent Assortment

- One gene does not influence transmission of another gene
 - Genes independent from each other
 - Not Linked
 - Creates non-P₁ phenotypes in F₂

3. Probability Calculations

- Determine probability of any trait
 - fraction between 0 and 1
 - phenotype or genotype
- Multiply probabilities
 - Only works for independent events
 - any number of unlinked genes

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Punnett squares Product rule

Hh colored eyelids

hh normal eyelids Ee brachydactyly (short fingers)

ee normal fingers

D. Pedigrees

- Chart of familial relationships •
 - Includes genealogy •
 - Includes medically important traits •
 - phenotypes, or better, genotypes •

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

C.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Symbols Lines

Roman numerals = generations

Arabic numerals = individuals in a generation

• Recessive alleles Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 4.4

Criteria for an Autosomal Recessive Trait

- 1. Males and females are affected.
- 2. Affected males and females can transmit the gene, unless it causes death before reproductive age.
- 3. The trait can skip generations.
- 4. Parents of an affected individual are heterozygous or have the trait.

• Dominant alleles Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Criteria for an Autosomal Dominant Trait

- 1. Males and females can be affected. Male-to-male transmission can occur.
- 2. Males and females transmit the trait with equal frequency.
- 3. Successive generations are affected.
- 4. Transmission stops if a generation arises in which no one is affected.

Uses •

• Identifying mutant genes Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Probability that Ellen is a carrier: $^{2}/_{3}$ b.

c. If Ellen is a carrier, chance that fetus is a carrier: 1/2c.

Total probability = $\frac{2}{3} \times \frac{1}{2} = \frac{1}{3}$