PROTISTS

© 2013-2015 James Bier

Objectives

- 1. List the characteristics shared among the protists.
- 2. Describe secondary endosymbiosis and the evidence for this hypothesis.
- 3. List the five major taxa of protists and provide the defining characteristics.
- 4. Identify the group of protists based on the characteristics listed.
- 5. Describe the life cycle of *Plasmodium*.
- 6. Describe alternation of generations.
- 7. Compare the two hypotheses regarding the root of the Eukarya.
- 8. List the main ecological niches of protists.

Outline

- A. Characteristics
 - 1. Secondary Endosymbioses
- B. Major Taxa of Protists
- C. Excavata
 - 1. Diplomonadida
 - 2. Parabasalia
 - 3. Euglenozoa
- D. Chromalveolata
 - 1. Alveolata
 - a. Dinoflagellata
 - b. Apicomplexa
 - c. Ciliates (Ciliophora)
 - 2. Stramenopiles (Heterokonphyta)
 - a. Diatoms (Bacillariophyceae)
 - b. Brown Algae (Phaeophyceae)
 - c. Oomycota
- E. Rhizaria
 - 1. Radiolaria
 - 2. Foraminifera
- F. Archaeplastida
 - 1. Red Algae (Rhodophyta)
 - 2. Green Algae (Chlorophyta)
- G. Unikonta
 - 1. Amoebozoa
 - a. Slime Molds (Mycetozoa)
 - 2. Opisthokonta
- H. Root of the Eukarya
- I. Ecological Niches

A. Characteristics

- Eukaryotic
- Poorly defined/differentiated group
- Most diverse group of eukaryotes
- Most unicellular
 - Some form specialized colonies
 - Some multicellular
- Organelles
 - Some unique to this "group"

1. Secondary Endosymbioses

- Theory regarding diversity of protists
- Primary endosymbioses
 - First alpha proteobacteria
 - Ancestor of mitochondria
 - Many genes moved to nucleus

- Second cyanobacterium
 - Ancestor of chloroplasts
 - red and green algae
 - double membrane chloroplast
- Secondary endosymbioses
 - Protists ingest/incorporate algae
 - Happened independently at least 3x
 - Nucleomorph present in chloroplast
 - Most similar to algae nuclear genes
 - Three or four membranes present

B. Major Taxa of Protists

- Groupings are decently supported
- Phylogeny among groups is weak

C. Excavata

- Named after "excavated" feeding tube
- Grouped based on cytoskeleton
 - Relatedness of groups tenuous

1. Diplomonadida

- Mitosomes, not mitochondria
 - No electron transport chain

2. Parabasilia

- Hydrogenosomes, not mitochondria
 - Produce hydrogen gas

5 µm

Giardia intestinalis, a diplomonad parasite

3. Euglenozoa

- Contain special rod inside flagellum
- Mixotrophs
 - photoautotrophs in light
 - heterotrophs without light
- Pellicle beneath plasma membrane
 - provides strength and flexibility

D. Chromalveolata

- May/may not be monophyletic
- Derived from secondary endosymbiosis with red alga?
 - Red algal genes in chloroplasts
 - Red algal genes in nucleus
 - Some missing plastids

1. Alveolata

- Group strongly supported
- Grouped due to presence of alveoli
 - Found under plasma membrane
 - Function uncertain

a. Dinoflagellata

- Extremely important phytoplankton
 - Producers in water ecosystems
- Covered by cellulose plates
- Groove between plates
 - Flagella within grooves
 - Causes cells to spin
- Some bioluminescent
- Cause of red tides

b. Apicomplexa

- Named after complex of organelles at apex of cell
 - contain penetrating enzymes
- form spores (sporozoite stage)
- Intracellular parasites of animals
- Apicoplast modified chloroplast

c. Ciliates (Ciliophora)

- Defined by presence of cilia
 - Use cilia to move and feed
- contain two nuclei
 - micronucleus "original" copy
 - macronucleus "working" genes

2. Stramenopiles (Heterokonphyta)

- Defined by straw-like hairs on flagella
 - Often paired with nonhairy flagellum

a. Diatoms (Bacillariophyceae)

- Defined by silica (SiO₂) cell wall
 - Provides protection from predators
- Major producers in aquatic systems
- Flagella only on male gamete

Diatom diversity

b. Brown Algae (Phaeophyceae)

- Multicellular alga
 - can grow quite large (60 m)
 - one type of "seaweed"
- Color from carotinoids and fucoxanthin
- Chloroplasts have four membranes
- Have blade, stipe, and holdfast
- Display alternation of generations
 - sporophyte (2n) makes spores (n)
 - spores have flagella (zoospores)
 - gametophytes (n) make gametes (n), which fuse to form sporophyte
 - heteromorphic v. isomorphic

50 µm

c. Oomycota

- "water molds" and downy mildews
- growth similar to fungi
- cellulose cell walls
- have lost plastids

© 2011 Pearson Education, Inc

E. Rhizaria

- Grouped by DNA similarity
- Mostly amoebas with threadlike pseudopodia
- May be member of Chromalveolata

1. Radiolaria

• Skeleton made of silica or strontium sulfate

2. Foraminifera

- unicellular
 - can grow to several cm in width
- porous shells hardened by calcium carbonate
 - provide home for algae

Globigerina, a foram in the supergroup Rhizaria

F. Archaeplastida

- Well defined group
- Group containing kingdom Plantae

1. Red Algae (Rhodophyta)

- Grouped by presence of phycoerythrin
 - Allows absorption of blue-green light
 - penetrates deeper into water
- Often multicellular
- No flagellated states

2. Green Algae (Chlorophyta)

- three membrane chloroplast
- often multicellular or colonial
- display alternation of generations
- flagella present in gametes
 - often in unicellular cells also
- closest relative of land plants
 - often included in kingdom Plantae

G. Unikonta

• Group containing kingdom Animalia and Fungi

1. Amoebozoa

• lobe and tube-shaped pseudopodia

a. Slime Molds (Mycetozoa)

- spreading, fungal-like body
- plasmodial slime molds
 - multinucleated, unicellular body
 - extend by pseudopodia
 - reproduce by powdery spores
- cellular slime molds
 - cells feed independently like amoebas
 - cells congregate when resources low
 - reproduces by powdery spores

2. Opisthokonta

- Two small protist groups
- Closest relatives to Fungi, Animalia

© 2011 Pearson Education, Inc

4 cm

600 µm © 2011 Pearson Education, Inc.

H. Root of the Eukarya

- Two hypotheses
 - Groups lacking mitochondria
 - Amitochondriate protists
 - Groups with unfused DHFR-TS gene

I. Ecological Niches

- Symbionts
 - Mutualists
 - Parasites
- Producers

