HISTORY OF LIFE ON EARTH

© 2013-2015 James Bier

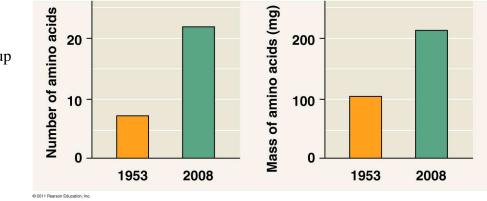
Objectives

- 1. Describe the steps and experiments that created the precursors of life.
- 2. Explain how oxygen was introduced into the environment and how it affected life on earth.
- 3. Describe the evolution of eukaryotes and the endosymbiont theory.
- 4. List the causes and consequences of mass extinctions.

Outline

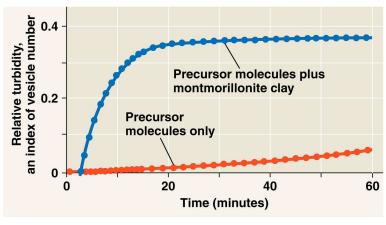
- A. Possible Origin of Life
 - 1. Creation of Organic Compounds
 - 2. Synthesis of Macromolecules
 - 3. Protocells
 - 4. Self-Replicating RNA
 - 5. Best Scenario
- B. Key Events in History of Life
 - 1. Introduction of Oxygen
 - 2. Evolution of Eukaryotes
 - 3. Origin of Multicellularity
 - 4. Colonization of Land
- C. Mass Extinctions
 - 1. Permian Extinction
 - 2. Cretaceous Extinction
 - 3. Consequences

A. Possible Origin of Life


- Current (oxidizing) atmosphere
 - 78% N₂
 - 21% O₂
 - 0.03% CO₂

- Early (reducing) atmosphere
 - 4000 mya
 - N_2 , NO_x
 - H₂O
 - H₂
 - H₂S
 - CH₄
 - NH₃
 - O₂ missing (key factor)
 - Highly reactive and corrosive
 - Quickly oxidizes other molecules
 - Dangerous to life

1. Creation of Organic Compounds

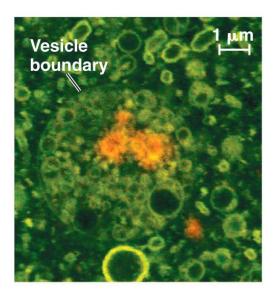

- Reducing atmosphere
- Large amounts of energy
 - Lightning
 - Volcanic Activity
 - Bombardment of Asteroids
 - High Pressure

- Amino acids, Nucleotides made
 - Monosaccharides also made
 - Primordial Soup

2. Synthesis of Macromolecules

- Formation of RNA spontaneously
- Energy from hot rocks (esp. clay)
 - Make RNA and polypeptides

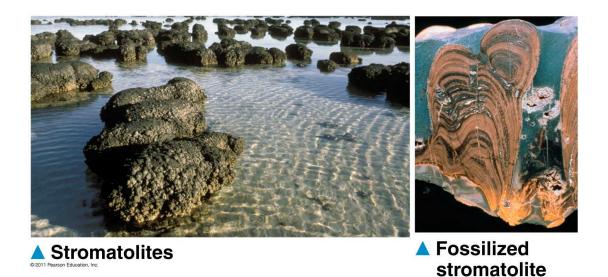
(a) Self-assembly


3. Protocells

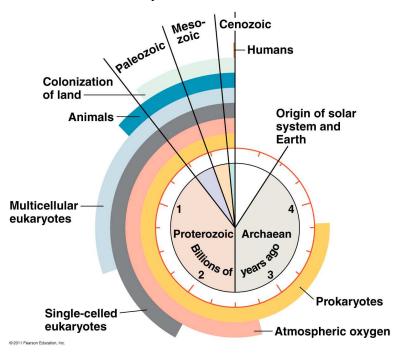
- Vesicles
 - Naturally formed by phospholipids
 - Occurs more quickly with montmorillionite clay
- Grow by absorbing each other
 - "Ingest" other clay particles
 - Selectively permeable
- Fragment when too large

_____20 μm

- 4. Self-Replicating RNA
- Can carry genetic information
- Can act as catalyst
- RNA is primer for DNA synthesis
 - DNA more stable
 - DNA more accurate

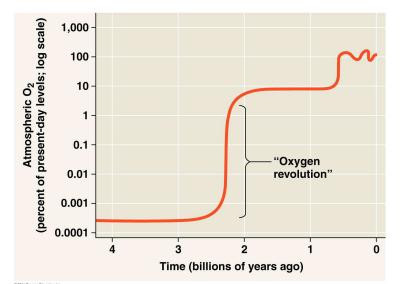

(c) Absorption of RNA © 2011 Pearson Education, Inc.

5. Best Scenario

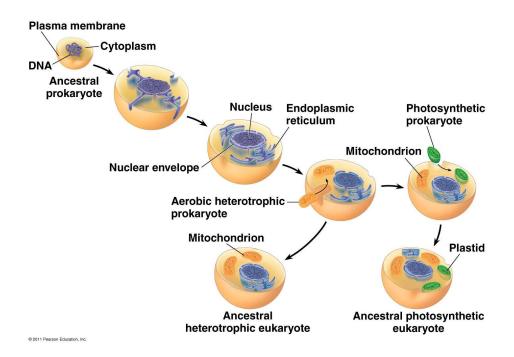

- Vesicles absorb molecules
 - Molecules form a complement
- Complementary polymers separate, begin producing new chains
- RNA fits scenario best
 - Naturally produced on clay
 - Act as catalyst
 - Acts as genetic material
- Successful vesicles
 - Able to absorb new material
 - Able to divide
 - Able to pass on traits
 - Reproduce more

B. Key Events in History of Life

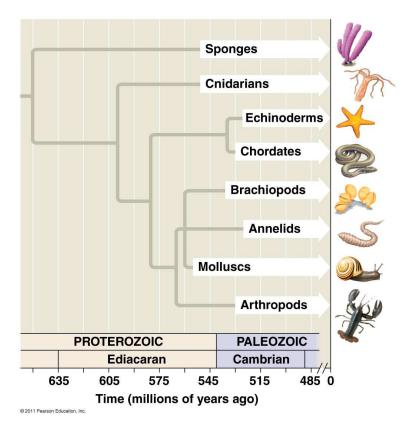
- Oldest evidence of life 3500 mya
 - Fossils of bacterial stromatolites
 - Complex pads of bacteria


- Suggests life began much earlier
 - ~3800 3900 mya?

• Prokaryotes only form of life


1. Introduction of Oxygen

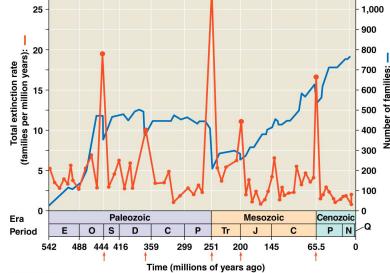
- Due to oxygenic photosynthesis
 - Most likely cyanobacteria
 - First measurable change 2700 mya
- Signaled by presence of iron (III) oxide
- "Oxygen Revolution" 2300 mya
 - Oxygen concentration rockets to 10%
 - Probably due to eukaryotes
 - Likely caused first major extinctions
 - Oxygen reactive and toxic
 - Forms free radicals
- Formed ozone (O₃)
 - Protects DNA from UV radiation
 - Life could live on surface
 - Before lived under 5-10 m of water
- Ended reducing atmosphere
- Allowed for highly efficient respiration
- <u>Geological History of Oxygen</u>


2. Evolution of Eukaryotes

- Fossil evidence ~ 2100 mya
 - Likely invagination of membrane
 - Allowed for larger size
- Endosymbiont theory
 - Descendents of bacteria
 - Oxygen more efficient for respiration
 - Photosynthesis provides nutrition

3. Origin of Multicellularity

- Fossil samples of algae ~1200 mya
 - Originated ~ 1500 mya?
- Most small
- Cambrian explosion
 - Evidence of many new animal phyla
 - Explosion of predators and defenses



4. Colonization of Land

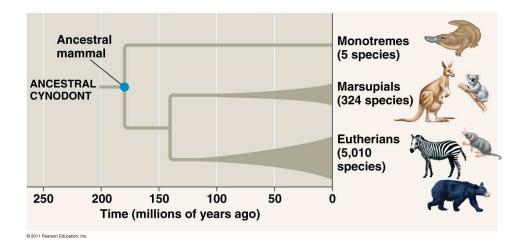
- Bacteria ~ 1000 mya
- Multicellular organisms ~ 500 mya
- Plant-Fungal symbiosis
- Crustacean Fossils ~ 420 mya
- Tetrapod Fossils ~ 365 mya

C. Mass Extinctions

- Loss of > 50% of species
- Due to severe climatic change
- Borders of geologic eras

1,100

1. Permian Extinction


- Paleozoic Mesozoic boundary
- c. 250 mya
- Due to volcanic activity
 - Land covered with lava and ash
 - Warmed earth by $\sim 6^{\circ}C$
 - Reduced oxygen levels
 - Poisoning with H₂S
 - Damaged ozone layer
- Lost 96% of marine animal species

2. Cretaceous Extinction

- Mesozoic Cenozoic boundary
- c. 65.5 mya
- Due to asteroid strike
 - Indicated by iridium-enriched clay
 - Cooled earth
 - Slowed photosynthesis

3. Consequences

- 5-10 million years to recover
- Increase frequency of predators
- Chance for new groups to proliferate
- Adaptive Radiation

