EVOLUTION OF POPULATIONS

© 2013-2015 James Bier

Objectives

- 1. Define evolution, and list and explain the three key factors for evolution.
- 2. State the Hardy-Weinberg Principle and list the assumptions behind it.
- 3. Describe genetic drift, bottlenecks and founder effects.
- 4. Define selection, and contrast artificial and the three types of natural selection.

Outline

B.

- A. Evolution
 - 1. Population Variation
 - 2. Key Factors of Natural Selection
 - 3. Dynamics of Natural Selection
 - Hardy-Weinberg Principle
 - 1. Mutations
 - 2. Migration
 - 3. Nonrandom Mating
 - 4. Population Size
 - a. Bottlenecks
 - b. Founder Effect
 - 5. Selection
 - a. Artificial Selection
 - b. Natural Selection
 - c. Types of Natural Selection
 - d. Sexual Selection

A. Evolution

- Descent with modification (Darwin)
- Change in populations over time
- Changes in allele frequencies in populations over time
 - microevolution
- Individuals do NOT evolve

1. Population Variation

- Population
- Population genetics
- Variation within populations
 - Environment
 - Genetics
 - Heritable
 - Discrete Characteristics

- Quantitative Characteristics
- Fixed alleles
 - Average Heterozygosity
- Variation generally considered good
 - Species can survive more conditions

2. Key Factors of Natural Selection

- Expression of trait varies
 - Not fixed
- Variation in trait is heritable
 - Genetic
- Trait effects fitness
 - Survival
 - Reproduction

3. Dynamics of Natural Selection

- Populations produce more individuals than the environment can sustain
 - Some are more successful than others
 - find food better
 - survive poor times better
 - impress the other sex better
 - Pass more of their genes to the next generation
- Repeat over billions of years

B. Hardy-Weinberg Principle

• Gene pool (alleles and genotypes) remain constant within a population

p + q = 1

- p = frequency of allele 1
- q =frequency of allele 2

 $\mathbf{p}^2 + 2\mathbf{p}\mathbf{q} + \mathbf{q}^2 = \mathbf{1}$

- $p^2 =$ frequency of homozygote 1
- 2pq = frequency of heterozygote
- $q^2 =$ frequency of homozygote 2

- Requirements
 - No mutations
 - No migration among populations
 - i.e., no gene flow
 - Random mating
 - Population size infinitely large
 - No selection

- All assumptions violated sometimes
 - Violations cause microevolution

1. Mutation

- Generates new alleles
- Ultimate source of new alleles

2. Migration

- Gene flow
 - Changes allele frequency
 - Can introduce new alleles

3. Nonrandom Mating

• Inbreeding

• Self fertilization

Stamen Carpel

4. Population Size

- Genetic Drift
 - Frequencies change due to chance
 - Have little effect on large population
 - Effects greatest in small populations
 - Alleles lost or fix more often
 - Causes loss of genetic variation

a. Bottlenecks

- Population size drastically shrinks
 - Becomes large later in time
- Death of individuals is random
 - e.g., volcanic eruption, habitat loss
- Genetic drift affects population during small population size
 - Variation returns slowly
- Major concern for endangered species

Location	Population size	Number of alleles per locus	Percentage of eggs hatched
Illinois 1930–1960s 1993	1,000–25,000 <50	5.2 3.7	93 <50
Kansas, 1998 (no bottleneck)	750,000	5.8	99
Nebraska, 1998 (no bottleneck)	75,000– 200,000	5.8	96

(b) © 2011 Pearson Edu

b. Founder Effect

cation, Inc.

- Few individuals begin new population
 - e.g., migrate to new island
- Compared to parent population:
 - All alleles not present
 - Alleles not in same proportion
- Genetic drift affects small population

5. Selection

- Some traits better than others
 - Survive better
 - Produce more offspring
- Acts on **PHENOTYPES**
- Requires variation in trait
 - Passed on if heritable

a. Artificial Selection

- Human breeds and culls offspring
 - i.e., Human determines survival and reproductive success of individuals
 - Breeder pairs organisms
 - Chooses offspring from mating
 - Mate those that best display trait
 - e.g., cows for most milk production
 - e.g., wheat with highest yields

b. Natural Selection

- Nature determines survival and reproductive success of individuals
 - Individuals choose mate
 - Number of surviving offspring based upon parental traits
 - e.g., fertility
 - e.g., ability to provide food
- Environment selects for better adapted
 - Most fit = most offspring
 - More alleles in next generation
- Developed by Darwin and Wallace

c. Types of Natural Selection

• Demonstrate with a continuous trait

- Stabilizing Selection
 - Width based on severity of selection
- Directional Selection
 - Allele frequency shifts toward extreme
 - Similar to artificial selection

- Disruptive/Diversifying Selection
 - Bimodal distribution of phenotypes
 - dimorphic
 - polymorphic

d. Sexual Selection

- Intrasexual competition
- Mate choice
- "Good Genes" hypothesis

•

