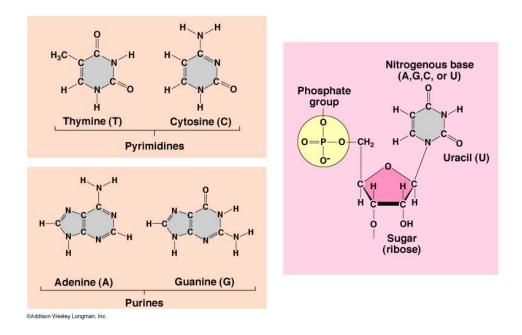
# **MOLECULAR BIOLOGY**

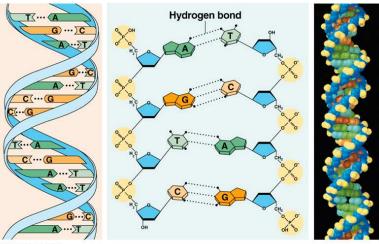
© 1998-2011 James Bier

#### **Objectives**

- 1. Describe the structure and replication of DNA.
- 2. Contrast structures of RNA and DNA.
- 3. Describe information flow in the cell.
- 4. Describe transcription and translation.
- 5. Define redundancy of genetic code.
- 6. Classify the types of mutations and their severity.
- 7. List the levels of DNA packaging.
- 8. Explain how cells differentiate.


# Outline

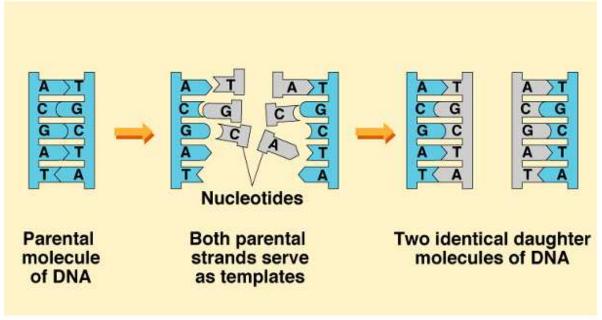
- A. Deoxyribonucleic acid (DNA)
  - 1. Replication of DNA
- B. Ribonucleic acid (RNA)
- C. Central Dogma
  - 1. Transcription
  - 2. Translation
  - 3. Genetic Code
- D. Mutations
  - 1. Mechanisms of Mutation
- E. DNA Packaging
- F. Differentiation


# A. Deoxyribonucleic acid (DNA)

- Cells contain large amounts of DNA
  - *E. coli* 4,700,000 bp
  - Humans 3,000,000,000 bp
- Purpose
  - Structural information (genes)
  - Regulatory signals
  - Centromeres, telomeres
    - only in eukaryotes

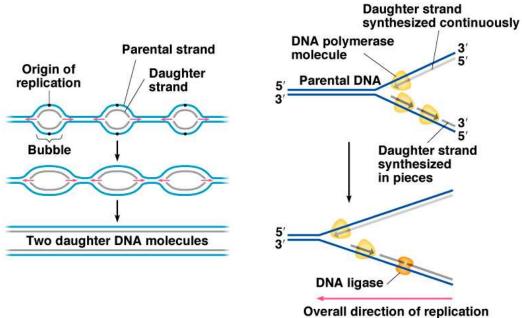
- Built from nucleotides
  - nitrogenous bases
    - purines (A,G) and pyrimidines (C,T)
  - deoxyribose (pentose)
  - phosphate




- Double helix
  - A paired with T, C paired with G
  - antiparallel DNA chains



GAddison Wesley Longman, Inc.


# 1. Replication of DNA

- Old strand acts as template for new
- Template DNA unwinds and unzips
- DNA polymerase adds bases
  - Complementary to other strand
  - Added in 5' to 3' direction
    - Based on carbon in deoxyribose

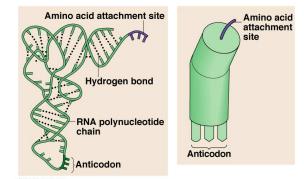


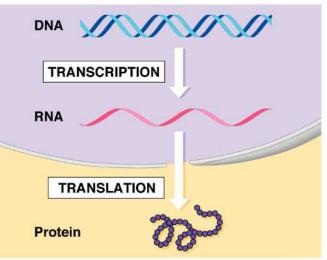
©Addison Wesley Longman, Inc.

- Two strands are antiparallel
  - 5' to 3' run in opposite directions
  - DNA unwinds in one direction
- Semiconservative replication



©Addison Wesley Longman, Inc.

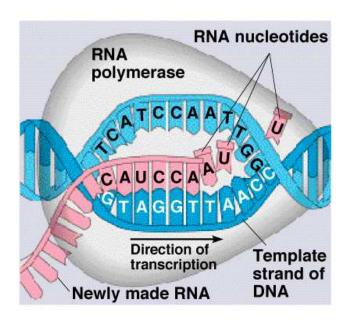

# **B.** Ribonucleic acid (RNA)

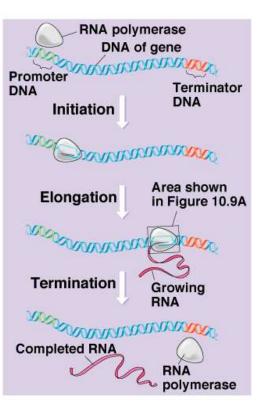

- Similar to DNA
  - String of nucleotides
    - purine and pyrimidine bases
    - pentose
    - phosphate
  - Helical structure
- Different from DNA
  - Single-stranded, not double-stranded
  - Ribose, not deoxyribose
  - Uracil (U), not Thymine (T)
    - Pairs with A

- Types
  - messenger RNA (mRNA)
  - ribosomal RNA (rRNA)
  - transfer RNA (tRNA)

# C. Central Dogma

- DNA  $\rightarrow$  RNA  $\rightarrow$  polypeptides
- Transcription
- Translation
- One gene one polypeptide

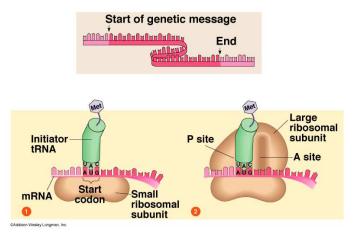


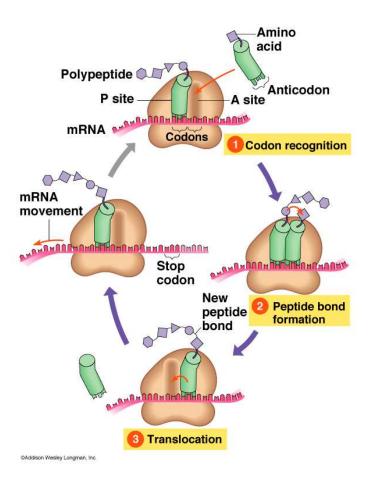

©Addison Wesley Longman, Inc.

# **1.** Transcription – Synthesis of RNA

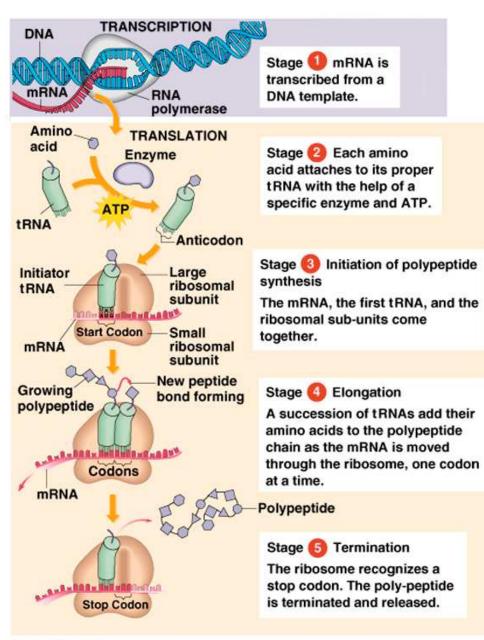
- Similar to DNA replication, except
  - RNA polymerase makes new RNA
    - Attaches to DNA at promoter
    - Ends at terminator
  - RNA synthesized on only one strand
    - RNA released from DNA
    - DNA strands reanneal







©Addison Wesley Longman, Inc.

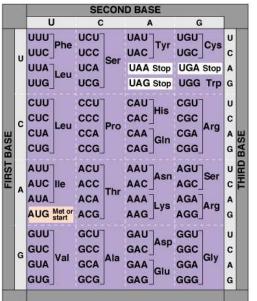
# 2. Translation – Synthesis of Proteins


- Nucleotides  $\rightarrow$  amino acids
- tRNA two binding sites
  - specific amino acid
  - anticodon for codon on mRNA
- Initiation
  - Ribosome binds mRNA at start codon
  - Complementary tRNA binds mRNA

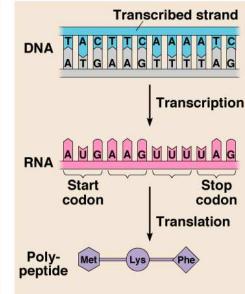


- Elongation
  - Second tRNA binds second codon
  - Ribosome catalyzes peptide bond
    - First tRNA released
    - Second tRNA holds peptide
  - Ribosome shifts down one codon




- Termination
  - No tRNA binds to stop codon
  - Amino acid chain released




©Addison Wesley Longman, Inc.

#### 3. Genetic Code

- 20 amino acids
- 4 nucleotide bases
  - Need 3 nucleotides for 1 amino acid
  - 1 codon starts translation
  - 3 codons stop translation
  - 61 codons bring amino acids
    - Some represented by a single codon
    - Some coded by multiple codons
      - Redundancy of genetic code

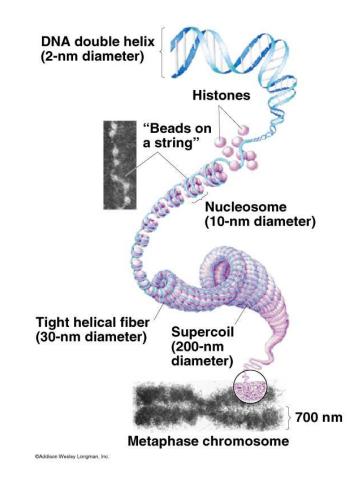






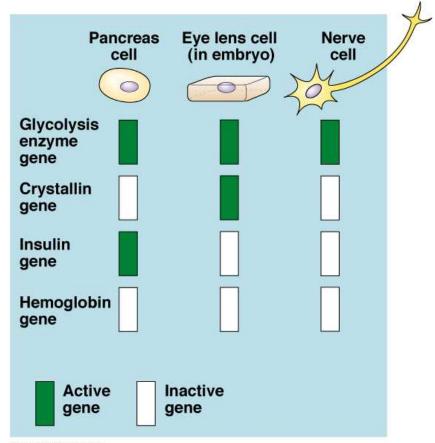
# **D.** Mutations

- Changes in genetic material (DNA)
  - Sequence of nucleotides is changed
- Source of new alleles in populations
  - Heritable mutations
- Point Mutations (Base Substitutions)
  - Silent mutation
    - Redundancy in genetic code
  - Missense
  - Nonsense
    - Prevents formation of protein
- Deletion/Insertion
  - Frameshifts
    - Shifts codon reading frame


# 1. Mechanisms of Mutation

- Spontaneous
  - Mistakes in DNA replication.
  - Occur once in every 10<sup>9</sup> bases

- Mutagen
  - Chemical
    - Base (Nucleotide) analogs
    - Intercalating agents
  - Physical
    - X-rays, gamma rays
      - Ionize DNA
      - Break covalent bonds
    - UV radiation
      - Causes thymine dimers


# **E. DNA Packaging**

- DNA double helix
- nucleosomes
- tight helical fiber
- supercoil
- metaphase condensing
  - e.g., X chromosome inactivation
    - Barr body



#### F. Differentiation

- Cells specialize for different functions
- Maintain complete genetic potential
  - No genes lost
  - Can produce complete individual
  - Specialized genes turned on
  - Unnecessary genes turned off



©Addison Wesley Longman, Inc.