PATTERNS OF INHERITANCE

© 1998-2011 James Bier

Objectives

- 1. Define heredity.
- 2. List at least four advantages of peas as a test organism for genetics studies.
- 3. Fully describe Mendel's experimental crosses and their results.
- 4. Identify P_1 , F_1 , and F_2 generations.
- 5. Define gene, allele, locus, genotype and phenotype.
- 6. State the principle of dominance, segregation and independent assortment.
- 7. Perform a Punnett Square. List all possible gametes from an individual. Determine genotypes and phenotypes from a Punnett Square.
- 8. Recognize incomplete dominance, partial dominance and codominance.
- 9. Recognize multiple alleles.
- 10. Recognize examples of polygenic inheritance, epistasis, and pleiotropy.
- 11. Recognize four systems of sex determination.
- 12. Define linkage and how it determines distances between genes.

Outline

- A. Heredity
- B. Mendelian Genetics
 - 1. Peas
 - 2. Experimental Design
 - a. Parental (P₁) Generation
 - b. First Filial (F_1) Generation
 - c. Second Filial (F₂) Generation
 - 3. Model for Genetic Inheritance
 - a. Mendelian Hypotheses
 - b. Punnett Square
 - c. Law of Independent Assortment
 - d. Test Crosses
- C. Beyond Mendelian Genetics
 - 1. Other Levels of Dominance
 - 2. Multiple Alleles
 - 3. Pleiotropy
 - 4. Polygenic Traits
 - 5. Epistasis
 - 6. External Factors
- D. Chromosomal Basis of Inheritance
 - 1. Linkage
- E. Sex Determination
 - 1. Sex Linkage

A. Heredity

- Passing traits from parent to offspring
- Genetics
 - Pangenes
 - Blending

B. Mendelian Genetics

- Gregor Mendel
 - Augustinian monk and naturalist
 - Grew crops for monastary
 - Performed experiments on side

1. Peas

- Advantages
 - Inexpensive
 - Fairly small
 - Produce many flowers and fruits
 - .: Can produce large numbers
 - .: Can analyze statistically
 - Self-fertilizing
 - Can control breeding
 - Many true-breeding varieties
- Disadvantages
 - One generation per year
- Modern test organisms
 - Yeast
 - Fruit flies
 - Arabidopsis
 - Corn

2. Experimental Design a. Parental (P₁) Generation

- Seven discrete true-breeding traits
 - No intermediate variant
 - Easy to distinguish
 - e.g., seed form, seed color
- Cross-pollinated opposite true-breeders
 - Monohybrid cross
 - "X" designates cross
 - e.g., ROUND X WRINKLED

b. First Filial (F₁) Generation

- Offspring from P₁ cross
- All F₁ displayed only one of two traits
 - e.g., ALL offspring were ROUND
 - Expressed trait dominant
 - Trait not observed recessive
- F₁ generation self-pollinates

c. Second Filial (F₂) Generation

- Offspring from F₁ selfing
- Ratio ³/₄ dominant, ¹/₄ recessive
 - e.g., 5474 round, 1850 wrinkled
- Repeated experiment with other traits
 - Always 3 dominant: 1 recessive
- While recessive trait not seen in F₁, recessive variant still present

3. Model for Genetic Inheritance

• How can a trait disappear in one generation, then reappear in ¹/₄ of next?

a. Mendelian Hypotheses

- Alternate forms of genes
 - Allele
 - Locus (pl. loci)
- Offspring has two genes for each trait
 - Receives one from each parent
 - Homozygous
 - Heterozygous
- Gametes carry only one allele for trait
 - Principle of Segregation
 - Fertilization restores two copies
- One factor prevents expression of other
 - Principle of Dominance

b. Punnett Square

- Does hypothesis fit data?
 - e.g., ROUND X WRINKLED
 - P₁ Round (RR) X wrinkled (rr)
 - F_1 All Round (Rr)
 - $F_2 \frac{3}{4}$ Round : $\frac{1}{4}$ wrinkled
 - $\frac{1}{4}$ RR : $\frac{1}{2}$ Rr : $\frac{1}{4}$ rr

- Phenotype
- Genotype

c. Law of Independent Assortment

- Dihybrid Cross
- Cross-pollinated P₁'s that bred true for two alternate traits
 - e.g., Round Yellow (RRYY) seeds X wrinkled green (rryy) seeds
- ALL F₁ are Round and Yellow (RrYy)
- F₁ self-pollinate
- F₂ offspring
 - 9/16 Round Yellow
 - 3/16 Round green
 - 3/16 wrinkled Yellow
 - 1/16 wrinkled green

©Addison Wesley Longman, Inc.

d. Test Crosses

- Determines genotype of dominant plant
- Test individual crossed with recessive
 - Recessive must be homozygous
- Possibilities
- All offspring dominant
 - Test individual homozygous dominant

- ¹/₂ offspring dominant, ¹/₂ recessive
 - Test individual heterozygous

C. Beyond Mendelian Genetics 1. Other Levels of Dominance

- Incomplete dominance
 - e.g., red X white = pink
- Codominance

2. Multiple Alleles

- e.g., ABO blood system •
- Three alleles present: I^A, I^B, i
 I^A and I^B are codominant
 Both I^A and I^B are dominant over i

3. Pleiotropy

- e.g., yellow mouse fur color gene •
 - Trait 1 Yellow fur (dominant)
 - Trait 2 lethal effect (recessive) •
 - Homozygous yy •
 - Heterozygous Yy •
 - Homozygous YY •

4. Polygenic Traits

- e.g., seed color in wheat •
 - Four genes with additive effect
 - Creates a continuum of traits •

5. Epistasis

- e.g., mouse fur color
 - Locus 1
 - Color dominant over albino
 - Locus 2
 - Black dominant over brown
 - If locus 1 homozygous recessive (albino), locus two not expressed

6. External Factors

- Gene affected by environment
 - e.g., PKU
 - e.g., water plant leaf morphology
 - phenotypic plasticity

D. Chromosomal Inheritance

- Walter Sutton (1900's)
 - Independent assortment of chromosomes

1. Linkage

- Violates independent assortment
 - Phenotypic ratio not 9:3:3:1
 - Parental types too common
- Genes on same chromosome
- Crossing over allows rearrangement

- Recombination frequency
 - Determines distance between genes
 - Closer genes have lower frequencies
 - Used to map loci

E. Sex Determination

- Autosomes
- Sex chromosomes
 - X-Y system
 - XX Female
 - XY Male
 - Z-W system
 - ZZ Male
 - ZW Female

♂(22 +

> 76 + ZZ

3

- X-O system
 - O absence of chromosome
 - XO Male
 - XX Female
- Haplodiploidy
 - haploid Male
 - diploid Female

©Addison Wesley Longman, Inc.

22 + XX

76 + ZW

- Environmental Sex Determination
 - Sex switching

1. Sex Linkage

- Genes associated with gender
- X chromosome
 - Larger, carries many important genes
 - Found in all humans
- Y chromosome
 - Much smaller than X
 - Does not carry all genes on X
 - Carries maleness genes
- Some critical genes on X but not on Y
- Some illnesses more common in males
 - red-green colorblindness, hemophilia
 - Recessive traits
- Females
 - Expressed in homozygous recessive
 - Carrier Heterozygous
- Males
 - Allele always expressed

