#### **CELLULAR REPRODUCTION**

© 1998-2011 James Bier

#### **Objectives**

- 1. Define lifecycle and biogenesis.
- 2. Contrast sexual and asexual reproduction.
- 3. Define chromatin, chromosome and chromatid.
- 4. Describe the stages of interphase, mitosis, and cytokinesis.
- 5. Describe how cell cycles are regulated and the effects from lack of control.
- 6. Define somatic cells, gametes, fertilization, haploid, diploid and homologous chromosomes.
- 7. Describe the stages of meiosis.
- 8. Contrast meiosis with mitosis.
- 9. List three sources of variation among offspring from sexual reproduction.
- 10. Define karyotype, autosomes, and sex chromosomes.
- 11. State how sex is determined.
- 12. Define nondisjunction and recognize illnesses caused by it.
- 13. List four types of chromosomal abnormalities.

#### Outline

- A. Life Cycles
  - 1. Biogenesis
- B. Genetic Material
- C. Cell Cycle
  - 1. Interphase
    - a.  $G_1 G_{ap} 1$  phase
    - b. S Synthesis phase
    - c.  $G_2$  Gap 2 phase
  - 2. Mitosis (M)
    - a. Prophase
    - b. Metaphase
    - c. Anaphased. Telophase
  - d. Telopha3. Cytokinesis
  - Cytokinesis
  - 4. Functions of Mitosis
  - 5. Control System
    - a. Growth Factors
    - b. Uncontrolled Growth
- D. Sexual Reproduction
- E. Meiosis
  - 1. Stages
    - a. Prophase I
    - b. Metaphase I
    - c. Anaphase I
    - d. Telophase I
    - e. Meiosis II
    - f. Differentiation
  - 2. Differences among Offspring
- F. Karyotypes
  - 1. Karyotype Abnormalities
  - 2. Chromosome Abnormalities

# A. Life Cycles

- Sequence of life stages
- Growth
- Reproduction
  - Sexual
    - Combination of two parents
      - Each gives <sup>1</sup>/<sub>2</sub> genetic material
    - Offspring genetically distinct
  - Asexual
    - Only one parent (mother cell)
    - Genetically identical to mother
    - Binary fission

# 1. Biogenesis

- All cells come from preexisting cells
- Cell division
  - Cellular repair
  - Multicellularity
  - Reproduction

# **B.** Genetic Material

- DNA
  - Complexed with protein
- Genes
  - Heritable traits
- Chromatin
- Chromosomes
- Chromatids
  - Connected at centromere

# C. Cell Cycle

- Interphase
- Mitosis (M)
- Cytokinesis
  - Often coupled with mitosis
- Mother cell becomes two daughter cells
  - Exact replicas
    - Genetic Material
    - Organelles





### 1. Interphase

- Metabolically very active
  - Not a resting stage
- Increasing volume
- Producing materials needed for life
- Duplicating DNA

# a. G<sub>1</sub> – Gap 1 phase

- Stage after cell division
- Not committed to divide
  - Lasts minutes to months
    - Some never divide (G<sub>0</sub>)

# **b. S** – Synthesis phase

- DNA replicated
  - Not visible under microscope

# c. G<sub>2</sub> – Gap 2 phase

- Between S and M phases
- Synthesize proteins for cell division

### 2. Mitosis (M)

- Nuclear division
  - Produces two identical nuclei
- Short phase
- Continuous process
  - Divisions somewhat arbitrary



# a. Prophase

- Chromatin condenses
  - Chromosome two chromatids
- Nuclear membrane, nucleolus vanish
- Mitotic spindle forms
  - Made of microtubules
  - Anchored at ends by centrioles

### **b.** Metaphase

- Spindle attaches to centromere
- Chromosomes pulled into line
  - Equatorial plate

#### c. Anaphase

- Centromeres divide
  - Chromatids separate
    - Each now called a chromosome
- Fibers pull chromosomes to poles
- Spindle stretches cell

### d. Telophase

- Chromosomes arrive at poles
  - Unwind into chromatin
- Spindle disappears
- Nuclear membrane, nucleoli reappear

# 3. Cytokinesis

- Generally occurs with telophase •
- Animals •
  - Furrow forms in middle •
    - Pinches cells apart •



- Vesicles lay down membrane •
- Wall grows from middle of cell •
- Division is usually equal ٠

#### 4. Functions of Mitosis

- Growth •
- Cell Replacement •
- Asexual Reproduction ٠



Daughter nucleus

 $\odot$ 

Daughter cells

### 5. Control System

- How do cells know when to divide? •
  - Too often cancer •
  - Not often enough death •
- Checkpoints •
  - G<sub>1</sub>, G<sub>2</sub> and M •
    - M checkpoint during metaphase •



#### a. Growth Factors

- Signal cells to continue cycle •
  - Proteins •
- Anchorage dependence
- Density-dependent inhibition ٠
  - Contact inhibition •



Cells anchor to dish surface and divide.

When cells have formed a complete single layer, they stop dividing (density-dependent inhibition).



If some cells are scraped away, the remaining cells divide to fill the dish with a single layer and then stop (density-dependent inhibition).



After forming a single layer, cells have stopped dividing.

Providing an additional supply of growth factors stimulates further cell division.

### **b.** Uncontrolled Growth

- Do not need growth factors
  - Do not stop at checkpoints
  - No density-dependent inhibition
  - May not have anchorage dependence
- Can live forever in culture
- Tumor
  - Benign
  - Malignant (Cancerous)
    - Metastasis
  - Treatment with radiation or drugs
    - Attack rapidly growing cells

# **D. Sexual Reproduction**

- Somatic cells
  - Diploid (2n)
  - Homologous Chromosomes
    - locus
    - allele





- Germ cells
  - Gametes
  - Haploid cells (n)
- Fertilization
  - Zygote

### E. Meiosis

- Reduction division
- Similar to mitosis except
  - Number of chromosomes halved
  - Requires two successive divisions
    - No S phase in between
  - Synapsis during first division
  - Produces 4 haploid daughter cells
    - Daughter cells not identical

### 1. Stages

- Two successive cell divisions
  - Meiosis I
    - Homologous chromosomes separate
  - Meiosis II
    - Chromatids split





#### a. Prophase I

- Chromatin condenses
- Synapsis
  - Homologous chromosomes pair
  - Tetrad
- Chiasmata (sing. chiasma) form
  - Crossing over
- Nuclear membrane, nucleolus vanish
- Meiotic spindle forms

### b. Metaphase I

- *Tetrads line up* 
  - Homologous chromosomes disengage
- Spindle fibers attach to centromeres

#### c. Anaphase I

- Homologous chromosomes separate
  - Centromeres do not separate
- Fibers pull chromosomes to poles
- Spindle stretches cell

#### d. Telophase I

- Chromosomes arrive at poles
- Spindle disappears
- Cells divide
- Each cell has one-half of chromosomes
- Second division immediately follows

#### e. Meiosis II

• Essentially like mitosis



### f. Differentiation

- Differentiation into mature sexual cells
  - Spermatagenesis
    - Four functional sperm
  - Oogenesis
    - One functional ovum
    - Three cells are non-functional

### 2. Differences among Offspring

- Random assortment of chromosomes
  - 50% chance for each chromosome
    - Number of different gametes
      - $2^n$  where n = haploid number
      - For humans,  $2^{23} = 8,388,608$
- Crossing over (Recombination)
  - During synapsis
    - Homologous chromosomes break
    - Fragments reattach to wrong chromosome





- Genetic recombination
- Can occur in nearly all locations

- Random fertilization
  - Chance two identical sperm fertilizes two identical ovum:
    - > 1:70 trillion

### F. Karyotypes

- Number and type of chromosomes
  - Count metaphase cell
- Autosomes
  - 22 pairs in humans
- Sex chromosomes
  - X required in all humans
  - Y determines maleness
  - XX Human female
  - XY Human male

# **1. Karyotype Abnormalities**

- Nondisjunction
  - Wrong number of chromosomes
  - Can live with unusual number
    - Only chromosomes 19-22, X, Y





5 The resulting display is the karyotype. The 46 chromosomes here include 22 pairs of autosomes and 2 sex chromosomes, X and Y. Each of the chromosomes consists of two sister chromatids lying close together. (see Figure 8.12)

- Chromosome 21
  - Trisomy 21, Down Syndrome
    - Occurs in 1 in 600 children
      - Rate increases with age of mother
- Sex Chromosomes
  - XXY Klinefelter's Syndrome
  - XYY
  - XO Turner's Syndrome
  - XXX, XXXX Metafemale

#### 2. Chromosome Abnormalities

- Change in structure of chromosomes
  - Deletion
  - Duplication
  - Inversion
  - Translocation
- Heritable only if in germ cells
- May cause cancer in somatic cells



