RESPIRATION AND FERMENTATION

© 1998-2011 James Bier

Objectives

- 1. List the stages of cellular respiration.
- 2. Describe the main steps in glycolysis and the Krebs cycle.
- 3. Describe the electron transport chain and chemiosmosis and how poisons disrupt them.
- 4. Contrast fermentation and respiration.

Outline

- A. Cellular Respiration
 - 1. Glycolysis
 - 2. Production of Acetyl~CoA
 - 3. Krebs Cycle
 - 4. Electron Transport System
 - a. Chemiosmosis
- B. Fermentation

A. Cellular Respiration

- Catabolism of organic molecules
 - Oxidation of glucose to CO₂

 $C_6H_{12}O_6+6\ O_2+6\ H_2O\rightarrow 6\ CO_2+12\ H_2O$

$$\begin{array}{ccc} C_6H_{12}O_6 + & 6 \ O_2 & \longrightarrow \longrightarrow \\ 6 \ CO_2 + & 6 \ H_2O \end{array}$$

- Stages
 - Glycolysis
 - Production of Acetyl~CoA
 - Krebs Cycle
 - Electron Transport Chain

1. Glycolysis

- In cytoplasm
- Oxidation of glucose to pyruvic acid

glucose + $2 \text{ NAD}^+ +$ $2 (\text{ADP} + \textcircled{P}) \rightarrow \rightarrow \rightarrow$ 2 pyruvic acid +2 NADH +2 ATP

- - Broken into two G3P
 - glyceraldehyde-3-phosphate
- Net 2 ATP made via SLP
- High energy e^{-} reduce 2 NAD⁺
- Pyruvic acid is left
- 2. Production of Acetyl~CoA

- In matrix of mitochondria
- Oxidation of pyruvic acid to acetyl~CoA

 $\begin{array}{ll} (2 \text{ pyruvic acid} + 2 \text{ CoA}) + & 2 \text{ NAD}^+ & \rightarrow \\ (2 \text{ acetyl} \sim \text{CoA} + 2 \text{ CO}_2) + & 2 \text{ NADH} \end{array}$

• Occurs 2x per glucose molecule

3. Krebs Cycle

- Circular series of reactions
- In matrix of mitochondria
- Oxidation of acetyl~CoA to CO₂

• Entering step

 $(2 \text{ acetyl} \sim \text{CoA} + 2 \text{ oxaloacetic acid}) \rightarrow$ (2 citric acid + 2 CoA)

• Occurs 2x per glucose molecule

• Oxidize citric acid to oxaloacetic acid

- two C, eight e⁻ are stripped
 - C excreted as CO₂
 - high energy e^{-} reduce NAD⁺
 - lower energy e⁻ reduce FAD
- 2 ATP made via SLP
- Oxaloacetic acid (OAA) is left
 - Restarts cycle

4. Electron Transport Chain (ETC)

• In cristae in mitochondria

- Oxidation of NADH and FADH₂
- Reduction of O₂ to H₂O

- High-energy e⁻ produce [H⁺] gradient
 - Passed to e⁻ carriers in membrane
 - As e^{-} passed, H^{+} are pumped out
 - e⁻ from NADH pump 3 pairs of H⁺
 - e⁻ from FADH₂ pump 2 pairs of H⁺
- Oxygen is final electron acceptor
 - Water is waste product
- Vulnerable to poisons that bind carriers

a. Chemiosmosis

- ATP made via chemiosmosis
 - Oxidative phosphorylation
 - Diffusion of 2 H⁺ makes 1 ATP

$68 \text{ H}^{\scriptscriptstyle +} ightarrow 34 \text{ ATP}$

- Some poisons block ATP Synthase
- Uncouplers leak H⁺ through membrane
 - Not through ATP synthase
 - Produces heat, not ATP
 - Naturally occurs in brown fat

B. Fermentation

- Oxidation of NADH
 - Needed for glycolysis to continue
- e⁻ returned to byproduct of glycolysis
 - Frees up NAD⁺
- Waste products
 - Alcoholic ethanol + CO_2

2 pyruvic acid +	2 NADH	$\rightarrow \rightarrow$
$(2 \text{ ethanol} + 2 \text{ CO}_2) +$	2 NAD^+	

• Lactic acid

- Temporary solution for some cells
 - Oxygen not available
- Only method for some anaerobes
- Produces less ATP than in respiration
 - Waste products high in energy
- Waste products also toxic