HARVESTING ENERGY

© 1998-2011 James Bier

Objectives

- 1. Define metabolism and differentiate between catabolism and anabolism.
- 2. Recognize various forms of energy and the Laws of Thermodynamics.
- 3. Define endergonic, exergonic, oxidation and reduction reactions.
- 4. Describe how enzymes work.
- 5. Recognize ATP, its role in metabolism, and two ways it is made.

Outline

- A. Metabolism
 - 1. Laws of Thermodynamics
 - 2. Enzymes
 - 3. Adenosine Triphosphate (ATP)
 - 4. Electron Transport Chain (ETC)
 - 5. Generation of ATP

A. Metabolism

- Catabolism
 - exergonic
- Anabolism
 - endergonic
- Metabolic Pathway
 - Each step catalyzed by different enzyme

1. Laws of Thermodynamics

- Energy (E)
 - Only true for a closed system
- 1. Energy cannot be created or destroyed
 - It can only change form
- 2. In all transformations, some energy cannot do work
 - Entropy
 - Randomness
 - Energy required to reverse entropy

2. Enzymes

• Holoenzyme

- Apoenzyme
- Nonprotein component
 - cofactor
 - coenzyme
- Active site
 - Enzyme-substrate complex

- Affected by
 - temperature
 - pH
 - Inhibitors
 - e.g., poisons, medicines

- Competitive
- Noncompetitive
- Feedback inhibition

3. Adenosine Triphosphate (ATP)

- Transports energy
 - Couples endergonic-exergonic reactions

- E released when 2nd or 3rd **(P)** released
- E expended to add 2^{nd} or 3^{rd} (P)
 - Phosphorylation

• Involved in many E transformations

4. Electron Transport Chain (ETC)

- String of electron carriers
 - Embedded in a membrane
 - Pass electrons from one to another
 - Series of oxidations-reductions
 - Energy released with each transfer
- Main energy producer in eukaryotic cell

5. Generation of ATP

• Chemiosmosis

- Uses energy from H⁺ gradient
- Redox reactions pump H⁺ out of cell
 - Occurs in ETC
 - [H⁺] high outside, low inside
- [H⁺] carries potential energy
- H⁺ diffuses across membrane
 - ATP Synthase
 - Couples diffusion with phosphorylation

- Types
 - oxidative phosphorylation
 - photophosphorylation
- Substrate-level phosphorylation (SLP)

