A TOUR OF THE CELL

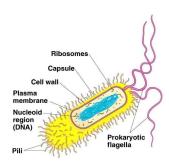
© 1998-2011 James Bier

Objectives

- 1. State the three tenets of cell theory.
- 2. Compare and contrast prokaryotic and eukaryotic cells.
- 3. Describe the structure, function, and chemistry of the plasma membrane.
- 4. Differentiate among methods of crossing the plasma membrane.
- 5. Discuss the make up and roles of various structures within the cell.

Outline

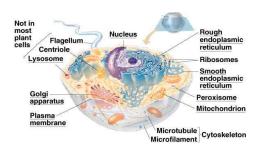
- A. Cell Theory
- B. Types of cells
 - 1. Prokaryotes
 - 2. Eukaryotes
- C. Cell Structures
 - 1. Plasma Membrane
 - a. Travel In/Out of Cell
 - 2. Nucleus
 - 3. Cytoplasm
 - 4. Nucleolus
 - 5. Ribosomes
 - 6. Endomembrane System
 - 7. Endoplasmic Reticulum (ER)
 - a. Rough Endoplasmic Reticulum (RER)
 - b. Smooth Plastic Reticulum (SER)
 - 8. Golgi Apparatus (Bodies)
 - 9. Vesicles
 - 10. Lysosomes
 - 11. Peroxisomes
 - 12. Vacuoles
 - a. Central Vacuole
 - b. Contractile Vacuole
 - 13. Mitochondria
 - 14. Chloroplasts
 - 15. Cytoskeleton
 - 16. Centrioles
 - 17. Cilia & Flagella
 - 18. Cell Wall
- D. Cell Junctions

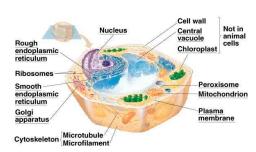

A. Cell Theory

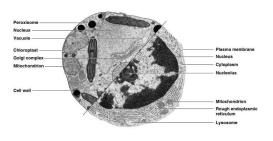
- Smallest functioning unit of life
- All living things are composed of cells
- All cells arise from pre-existing cells

B. Types of cells

1. Prokaryotes

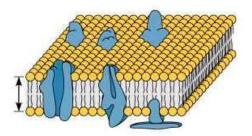

- "pro" = before + "karyos" = nucleus
- Lack a nucleus

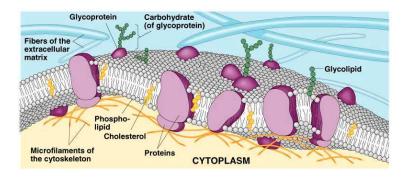



- Single circular chromosome
- Lack organelles
- Cell wall of peptidoglycan
- Divide by binary fission
- Small size (compared to eukaryotes)
 - 1-2 μm in diameter
 - 1-10 µm in length
 - Range: $0.2 \, \mu m 750 \, \mu m$
- High surface area:volume ratio (compared to eukaryotes)
- Domains Bacteria and Archaea

2. Eukaryotes

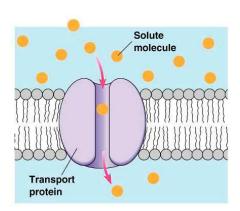
- "eu" = true + "karyos" = nucleus
- Nucleus
 - Multiple linear chromosomes
- Membrane bound organelles
- Cell wall of cellulose or chitin (if present)
- Divide by mitosis and cytokinesis
- Large size (compared to prokaryotes)
 - 10-100 μm
 - Range $5 \mu m$ several meters
- Low surface area:volume ratio
 - 10x smaller than prokaryotes
- Domain Eukarya
 - Protista, Fungi, Plantae and Animalia



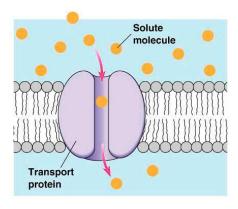

C. Cell Structures

1. Plasma Membrane

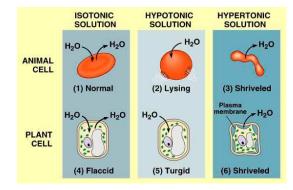
- Membrane Structure
 - Fluid mosaic structure

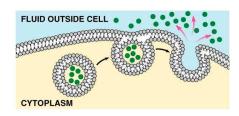

- Phospholipid bilayer
 - Hydrophilic parts on outside
 - Hydrophobic parts on inside
 - Sterols (cholesterol in humans)
- Embedded with proteins
 - Permeases
 - Peripheral proteins
- Carbohydrates
 - Stick out from membrane

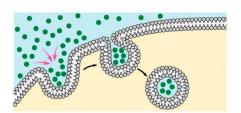
- Selectively permeable boundary
- Ultimate area for energy production
- Working surface for enzymes
- Present in all cells


a. Travel In/Out of Cell

- Passive transport
 - Simple Diffusion
 - Small, nonpolar molecules
 - Facilitated Diffusion


- Permease required
- Polar molecules and ions


- Active Transport
 - Energy required
 - from ATP or H⁺
 - Permease required
 - Transport against [gradient]

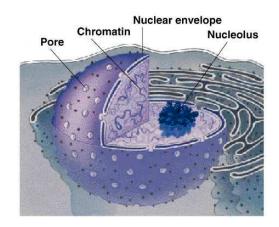


- Osmosis
 - Water moves from:
 - lower to higher [solute]
 - higher of lower [water]

- Changes internal pressure
 - Isotonic
 - Hypertonic
 - Hypotonic

- Exocytosis
- Endocytosis
 - Phagocytosis
 - Pinocytosis

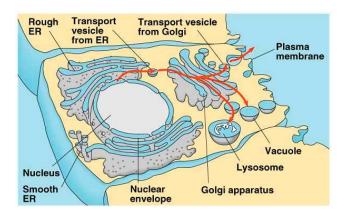
2. Nucleus


- Region of the cell
 - Surrounded by nuclear membrane
 - Double membrane
 - Has large (nuclear) pores
- Houses genetic material
- Defines eukaryotes
- Present in all eukaryotes

3. Cytoplasm

- Region of cell outside nucleus
- Mostly water with salts and proteins
- Medium of many chemical reactions
 - ~1000 different enzymes
- Present in all cells

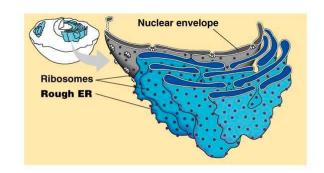
4. Nucleolus


- Inside nucleus
- Made of RNA, DNA and proteins
- Makes ribosomes
- Present in all eukaryotes

5. Ribosomes

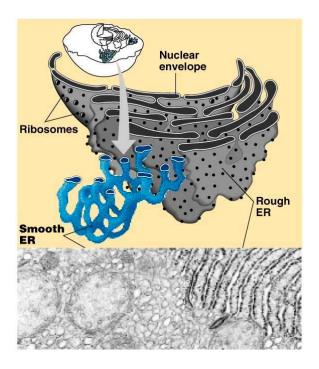
- Made of RNA and protein
- Protein synthesis
- Present in all cells

6. Endomembrane System

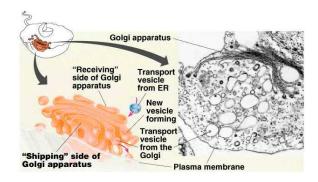

- Membrane network in cytoplasm
- May be physically connected
- Is functionally connected
- Compartmentalizes cell
- Solves low surface area: volume ratio
- Present in all eukaryotes

7. Endoplasmic Reticulum (ER)

- Network of membranes
 - Continuous with nuclear membrane
- Synthesis, modification and transport
 - Transfers information
- Present in all eukaryotes


a. Rough Endoplasmic Reticulum (RER)

- Associated with ribosomes
- Membrane and secretory protein production
 - Glycosylation


b. Smooth Endoplasmic Reticulum (SER)

- No ribosomes
- Lipid and steroid production
- Detoxification

8. Golgi Apparatus (Bodies)

- Stack of membranes
- Modifies, sorts, and ships products from ER
 - Produces lysosomes
- Present in all eukaryotes

9. Vesicles

- Membrane-bound containers
 - Produced by ER, Golgi apparatus, and plasma membrane
 - Formed by "budding" or endocytosis
- Transports material among organelles
- Can empty contents outside cell
 - Exocytosis
- Present in all eukaryotes

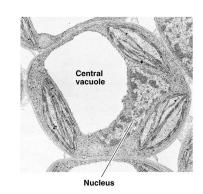
10. Lysosomes

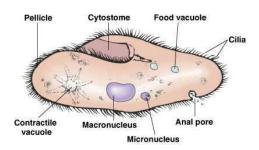
- Temporary vesicle
 - Stores hydrolytic/digestive enzymes
- Breaks down proteins, lipids, etc.
 - Destroys ingested cells and structures
 - Fuses with vesicles
- Breaks open to kill cell
- Present in some protists and animals

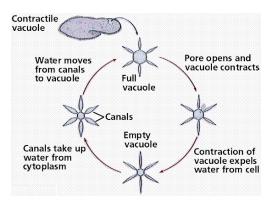
11. Peroxisomes

- Permanent "vesicle"
 - Stores oxidizing compounds
 - Produces H₂O₂ to destroy compounds
- Degrades cellular junk
- Present in both plants and animals

12. Vacuoles

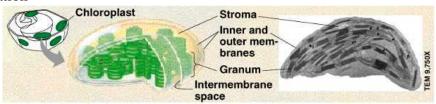

- Permanent membrane-bound container
- Storage compartment


a. Central Vacuole

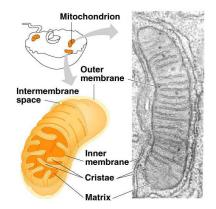

- Stores water and junk
- Gives plant cells rigidity (turgor)
 - Acts as plant skeleton
- Present in some protists and plants

b. Contractile Vacuole

Collects and ejects excess water and salt


• Present in some protists

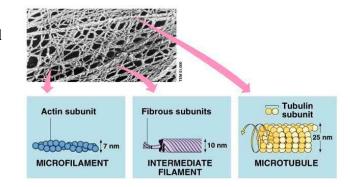
13. Mitochondria


- Double membrane
 - Inner membrane folded into cristae
- Dozens of enzymes in/on cristae
- Aerobic (cellular) respiraton
 - Harvests energy to produce ATP
 - Oxidative phosphorylation
- Present in both plants and animals

14. Chloroplasts

- Triple membrane
 - Inner membrane forms thylakoids
- Dozens of enzymes in/on thylakoids
- Photosynthesis
 - Harvests light energy to make ATP and sugar
 - Photophosphorylation

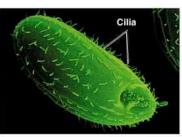
- Type of Plastid
- Present in some protists and plants
- Leucoplasts
 - Starch and lipid storage

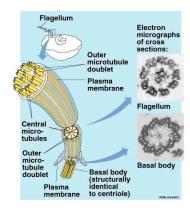


15. Cytoskeleton

- Bridgework of protein fibers inside cell
 - Microfilaments thinner
 - Made of actin
 - Microtubules thicker
 - Made of tubulin
 - Intermediate filaments
- Localizes organelles and enzymes
 - Increases efficiency of reactions
- Flagellar and muscle movements
- Present in all eukaryotes

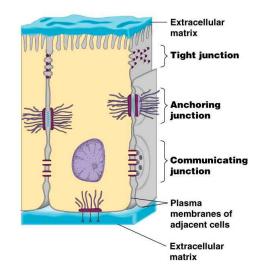
16. Centrioles

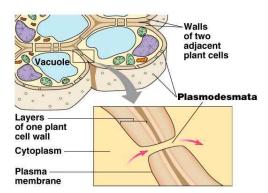

- Located just outside nucleus
- Made of the protein tubulin
 - 9 triplets
- Centrosome
 - Anchors spindle during mitosis
- Basal body
 - Anchors cilia/flagella
- Present in some protists and animals



17. Cilia & Flagella

- Thin appendages that stick outside cell
 - Made of protein
 - 9 pairs + 2 of microtubules
 - Covered by plasma membrane
 - Anchored by basal body (centriole)
 - Cilia shorter, more numerous
 - Flagella longer and fewer
- Movement
- Found in some protists and animals




18. Cell Wall

- Rigid framework outside membrane
- Made of tough material
 - Cellulose Plants and algae
 - Chitin Fungi
 - Peptidoglycan Bacteria
- Protects cell from osmotic rupture
- Maintains shape of cell
- Found in some protists, fungi, and plants

D. Cell Junctions

- Extracellular matrix of glycoprotein
- Connects cells
 - Tight Junction
 - Anchoring Junction
 - Communicating Junction
 - Plasmodesmata
- Helps cells communicate

