MOLECULES OF CELLS

© 1998-2011 James Bier

Objectives

- 1. Describe the special binding properties of carbon.
- 2. Identify the building blocks of carbohydrates, lipids, phospholipids, proteins and nucleic acids.
- 3. Describe the four levels of protein structure.

Outline

- A. Organic (Carbon) Compounds
 - 1. Carbohydrates
 - 2. Lipids
 - 3. Proteins
 - 4. Nucleic Acids

A. Organic (Carbon) Compounds

- Based upon carbon skeleton
 - Major building block of cells
- Special properties of carbon (C)
 - Forms four covalent bonds
 - Forms long chains with itself
 - Can grow very large
 - Forms bonds with many elements
 - e.g., H, O, N, S, P
 - C–H has high energy
 - Hydrocarbons
 - Can form 5 and 6 atom rings

Structural formula H H-C-H H	Ball-and-stick model	Space-filling model			
Methane The four single bonds of carbon point to the corners of a tetrahedron.					
H H H—C—C H H Ethane Carbo	HHC HOC a I n skeletons vary in I	H H - C - C - H H H Propane ength.			
H H H H-C-C-C H H H Butan Skeletons n	H H - C - H H - C H H e Islanay be unbranched of	H H-C-H 4 H 2-C-C-H 4 H H 3 sobutane 0 branched.			
H H H H−C=C−C H 1-Buter Skeletons may have	I H H H H	H H H C = C - C - H H P-Butene n can vary in location.			
H H H H C Vyclohes Skeleto	H H H H H H tane E ns may be arranged	H C C C C C C C H H H Benzene in rings.			

- Functional groups
 - hydroxyl –OH
 - amino $-NH_2$
 - carboxyl –COOH
 - carbonyl –CO–

Functional Group	General Formula	Name of Compounds	Example	Where Else Found
Hydroxyl —OH (or HO—)	—о—н	Alcohols	н н н–с–с–он н н Ethanol	Sugars; water-soluble vitamins
Carbonyl	-c_H	Aldehydes	H H O H - C - C - C H H H H Propanal	Some sugars; formaldehyde (a preservative)
	o 	Ketones	H O H H C C C C H H H H Acetone	Some sugars; "ketone bodies" in urine (from fat breakdown)
Carboxyl —COOH	-с он	Carboxylic acids	H-C-COH H Acetic acid	Amino acids; proteins; some vitamins; fatty acids
Amino —NH ₂ (or H ₂ N —)	-N H	Amines		Amino acids; proteins; urea in urine (from protein breakdown)

• Special units (monomers)

1. Carbohydrates

- C, H, O
- monomeric ratio CH₂O

HO-

- monosaccharide
 - 3-7 C
 - glucose (dextrose), fructose (6 C)

- ribose, deoxyribose (5 C)
- disaccharide

• polysaccharide

- energy storage (starch, glycogen)
- structure (cellulose)

2. Lipids

- C, H, O, sometimes P
- nonpolar
 - oils, fats, waxes, steroids

• building blocks

- glycerol
- fatty acid
 - saturated
 - unsaturated
- triglyceride (simple lipids)
 - energy storage, insulation, buoyancy

- phospholipids
 - membranes

- steroids
 - hormones, membranes

3. Proteins

- C, H, O, N, S
- 50% of cell dry weight
- most diverse group of compounds
 - supports, enzymes, transporters, toxins, signals, antibodies, etc.
- amino acid

- amino group (acts as base)
- carboxyl group (acts as acid)
- R group gives special properties
- 20 amino acids

- protein structure
 - primary structure
 - sequence of amino acids
 - peptide bond

©Addison Wesley Longman, Inc.

(a) Primary structure: polypeptide strand

- secondary structure
 - α -helix, β -pleats, β -sheets
 - hydrogen bonds

- tertiary and quaternary structure
 - additional 3D folding
 - disulfide bridges
 - ionic bonds
 - hydrogen bonds
 - hydrophobic interactions
 - tertiary single polypeptide

- quaternary multiple polypeptides
- conjugated proteins
 - e.g., glycoproteins, phosphoproteins, hemoglobin
- denaturation

4. Nucleic Acids

- C, H, O, N, P
- DNA, RNA
- nucleotides

- pentose ribose or deoxyribose
- phosphate one, two or three
- polynucleotide
 - sugar–phosphate connect

- DNA
 - double-helix
 - hydrogen bonding
 - genetic material

- RNA
 - single-stranded
 - protein synthesis

- special nucleotides
 - energy transport
 - $ATP \leftrightarrow ADP$

- electron transport
 - $NAD^+ \leftrightarrow NADH$
 - $NADP^+ \leftrightarrow NADPH$

• $FAD \leftrightarrow FADH_2$